
Our GO2 entry

Daniel Bienstock (Columbia), Richard Waltz (Artelys), Jorge Nocedal (Northwestern)

#2 Overall

Outline of talk

• Underlying solver

• Choice of solvers, language(s) and resulting tradeoffs

• Comments on the problem

• Some details on our algorithm

• Future work

Underlying solver

• KNITRO

• General optimizers would call it a “log barrier” solver – an interior point method

• Newton’s method under the hood

• Converges to a local minimum of appropriate merit function which balances feasibility and optimality

• Merit function (IPOPT: a filter method) for stepsize computation

• These are excellent algorithms

• Scale fairly well to large (enough) problems

• Success depends on skill in how we use these methods

Programming language: why and implications

• We used Python

• I code in Python everyday, but I do not like Python. Why not use a modern language, such as C?

• I have worked on OPF for some time, but do not fully understand the .RAW format. The transformer specifications are troublesome

• I did not have confidence that I would develop a correct understanding within the scope of the competition

• The scoring methodology was complex and is tied to the data format. In GO1 we replicated some of the scoring code, but GO2 looked more difficult

• We anticipated that our code would need to evaluate multiple candidate solutions for each contingency

• We decided to incorporate the data reading code and the evaluation code from the evaluation team into our code.

• GO2 team altered the standard exception handling mechanism in Python. This challenged our debugging.

• Python can be unbearably slow, and Numpy is not always a possibility

• If we had the time we might attempt to redo everything in C. Note: this assumes that the data format and the evaluation code do not change (and they
changed late into the competition)

Modeling approach

• Knitro requires the computation of the gradient and Hessian of each constraint at each iteration

• A major challenge. It gets in the way of modeling. Very error prone. ACOPF is especially challenging. It should be
made automatic

• We used AMPL as an intermediary between our Python code and Knitro

• AMPL is very good at this !!! Fast (and correct) even on large GO2 models

• But: AMPL is old. It uses a file system interface with solvers. Files written and read as inputs and outputs. Can be
nontrivial to debug models

• The file system feature interfered with MPI and the testing platform. Richard had to invest time to fix this.

• It would be outstanding if the AMPL team addressed the file system feature. It belongs in another era

• Nevertheless, we are very thankful for their help. AMPL proved invaluable

Comments on problem

• On the largest cases, Knitro can require multiple minutes to run on a problem “from scratch”

Noteworthy: includes integer (binary) variables only

We model integer variables as (appropriate) sums over binary variables

Adjusted formulation: sometimes we are strict on (not) allowing slacks. Sometimes we penalize slacks linearly

• Thousands of contingencies

• A “proper” security-constrained algorithm should make multiple passes over the contingencies, and re-run the base case in full

• We deemed such an algorithm infeasible for our algorithmic setup under the GO2 rules. Not nearly enough time

• So, what to do:
1. One-way algorithm: run the base case, and then run each contingency, repairing the solution as best as possible
2. But each “run” involves multiple passes

• Why? We expected realistic problems in the following regard:
1. The prior solution, in general, should be “not too bad”,
2. We expected the power system to be flexible
3. We expected that in general the contingencies should be manageable

We like a good challenge: let’s be scrappy

• A multiple attempt approach. Let’s consider the base case

• First, try the prior solution and keep it as a candidate

• Run Knitro on the relaxation, and then try to round (another candidate)

• Run Knitro on the relaxation, then fix many non-integer variables, then re-run full
problem

• Let’s cheat:
• Observe where (which buses) the prior solution is infeasible beyond a threshold
• Fix integer variables elsewhere
• Run problem with the integer variables fixed this way

• Why?

N06100 scenario 115
6476 buses, 3371 loads, 406 generators, 5337 lines, 3086 transformers, 2467 contingencies

• About 100,000 variables and constraints

• Picture shows buses where prior solution has infeasibility greater than 1e-3: about 200

obj=712281.64
total_bus_cost 1.85847217e-02
total_load_benefit 1.26257799e+06
total_gen_cost 5.50296330e+05
total_line_cost 0.00000000e+00
total_xfmr_cost 0.00000000e+00

(Knitro feaserror 2.481e-09)

169.05 sec 450 iterations

How about the contingencies?
• Consider a given contingency

• The base case solution is a candidate: let’s keep it

• Even if bad (which it often is) the base case solution is bad in at most two buses

• We suspect that patching the base case solution primarily involves voltage adjustments

• We view this as primarily a reactive power issue

• An old power engineer’s saying: reactive power does not travel far

Solution

1. Let S be the set of buses where the base case solution is infeasible
2. Let N be the set of buses that are close to S using an appropriate metric
3. Fix all binary variables outside of N. Run Knitro on resulting problem

4. What is the “appropriate metric”. Length of a branch <f, t> = reactance
5. What is “close”: take the nearest K buses. K = 5, 10, 40, 100 were tried by us. Make sure N includes at least one generator

N06100 scenario 115
6476 buses, 3371 loads, 406 generators, 5337 lines, 3086 transformers, 2467 contingencies

Contingency 3 (line down)

ba

• Base case obj: 712281.64

• Heuristic solution:
total_bus_cost 1.65362151e-02
total_load_benefit 1.25961077e+06
total_gen_cost 5.44767392e+05
total_line_cost 0.00000000e+00
total_xfmr_cost 0.00000000e+00

objective 714843.36

31.30 seconds 227 iterations
+ 6.8 seconds + 27 iterations (rounding)

Thoughts about the future

• Implementation in C? Assuming the input format and evaluation does not change.

• Thinking about a GPU-based prox-like algorithm for nonconvex optimization

• We were implementing a “survivable network” step that did not make it into the
final round due to our lack of time. (1 out of N system)
• Applies to generator-out contingencies
• No generator involved in a contingency should output “too much” in the base case solution
• The “too much” involves a computation that in principle is another nonconvex optimization

problem

• Useful?

I. Pg =-D
base

g

I sgipgl 7 D
'

ltgcc
5-+9

⇒ Pg ← M9

Thoughts about the future

• We look forward to the next challenge

• Please, please, please let it span three summers.

Many of us
have a day job have a life teach
have other time consuming ARPA-E contracts
have a lot to do beyond this nice competition

